Regression Modeling for Nonparametric Estimation of Distribution and Quantile Functions

نویسندگان

  • Ming-Yen Cheng
  • Liang Peng
  • LIANG PENG
چکیده

We propose a local linear estimator of a smooth distribution function. This estimator applies local linear techniques to observations from a regression model in which the value of the empirical distribution function equals the value of true distribution plus an error term. We show that, for most commonly used kernel functions, our local linear estimator has a smaller asymptotic mean integrated squared error than the conventional kernel distribution estimator. Importantly, since this MISE reduction occurs through a constant factor of a second order term, any bandwidth selection procedures for kernel distribution estimator can be easily adapted for our estimator. For the estimation of a smooth quantile function, we establish a regression model of the empirical quantile function and obtain a local quadratic estimator. It has better asymptotic performance than the kernel quantile estimator in both interior and boundary cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

Nonparametric estimation of conditional quantiles using quantile regression trees

A nonparametric regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning of the covariate space is investigated. Unlike least squares regression trees, which concentrate on modeling the relationship between the response and the covariates at the center of the response distribution, our quantile...

متن کامل

Bayesian Nonparametric Modeling in Quantile Regression

We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on par...

متن کامل

Nonparametric multivariate conditional distribution and quantile regression

In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...

متن کامل

Nonparametric M-quantile Regression via Penalized Splines

Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002